On the Formulation and Implementation of Optimal Superconvergent One Step Quadratic Spline Collocation Methods for Elliptic Problems
نویسندگان
چکیده
We formulate new optimal quadratic spline collocation methods for the solution of various elliptic boundary value problems in the unit square. These methods are constructed so that the collocation equations can be solved using a matrix decomposition algorithm. The results of numerical experiments exhibit the expected optimal global accuracy as well as superconvergence phenomena. AMS subject classifications. 65N35, 65N22.
منابع مشابه
Optimal Quadrati Spline Collo ation Methods for the Shallow Water Equations on the Sphere
In this study, we present numerical methods, based on the optimal quadratic spline collocation (OQSC) methods, for solving the shallow water equations (SWEs) in spherical coordinates. A quadratic spline collocation method approximates the solution of a differential problem by a quadratic spline. In the standard formulation, the quadratic spline is computed by making the residual of the differen...
متن کاملFast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation
Quadratic Spline Collocation (QSC) methods of optimal order of convergence have been recently developed for the solution of elliptic Partial Differential Equations (PDEs). In this paper, linear solvers based on Fast Fourier Transforms (FFT) are developed for the solution of the QSC equations. The complexity of the FFT solvers is O(N2 logN), where N is the gridsize in one dimension. These direct...
متن کاملAn ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کاملQuartic-spline Collocation Methods for Fourth-order Two-point Boundary Value Problems Abstract Quartic-spline Collocation Methods for Fourth-order Two-point Boundary Value Problems
Quartic-Spline Collocation Methods for Fourth-Order Two-Point Boundary Value Problems Ying Zhu Master of Science Graduate Department of Computer Science University of Toronto 2001 This thesis presents numerical methods for the solution of general linear fourth-order boundary value problems in one dimension. The methods are based on quartic splines, that is, piecewise quartic polynomials with C3...
متن کاملAn Approximate Solution of Functionally Graded Timoshenko Beam Using B-Spline Collocation Method
Collocation methods are popular in providing numerical approximations to complicated governing equations owing to their simplicity in implementation. However, point collocation methods have limitations regarding accuracy and have been modified upon with the application of B-spline approximations. The present study reports the stress and deformation behavior of shear deformable functionally grad...
متن کامل